您好:这款游戏可以开挂,确实是有挂的 ,很多玩家在这款游戏中打牌都会发现很多用户的牌特别好,总是好牌,而且好像能看到-人的牌一样。所以很多小伙伴就怀疑这款游戏是不是有挂 ,实际上这款游戏确实是有挂的
1.这款游戏可以开挂,确实是有挂的,通过添加客服微
2.在"设置DD功能DD微信手麻工具"里.点击"开启".
3.打开工具.在"设置DD新消息提醒"里.前两个选项"设置"和"连接软件"均勾选"开启"(好多人就是这一步忘记做了)
4.打开某一个微信组.点击右上角.往下拉."消息免打扰"选项.勾选"关闭"(也就是要把"群消息的提示保持在开启"的状态.这样才能触系统发底层接口 。)
【央视新闻客户端】
光从基因表达谱找有异常表达的基因也不全面。做出来的基因表达谱往往有很多基因存在差异 ,有的可能是一些下游的免疫生物学反应,有的可能是误差或个体差异(尤其是做的数量少时),剩下的可能才有加以考虑的价值。
另外,有时疾病易感基因本身表达并无改变 ,而是通过调控其它基因发挥作用 。所以,致病基因的寻找应从多种途径着手。
一孔之见,如有谬误之处 ,请大家指教。 多谢verygood 兄,我的第一步可能只能做到表达谱的改变这一层次,如果有机会做下去的话 ,如你所言,应该从各种途径全面考虑 。我现在的想法是以表达谱基因芯片技术为核心方法,做出患者和正常人小梁细胞基因表达谱的差异的总体信息 ,如maxon和你所说,这样可能找到新的致病相关基因,也可能不行 ,我想着起码是一个方面吧(不知对不对)。 我目前所能考虑的是如何组织自己的思路,来吧这个工作做好。还有几个问题请教:
1.基因文库的建立方法中,比如有一篇文章中选了1118个基因进行研究,通过BLAST ,分成了已知基因 、已知序列、未知基因等几类,我不明白他们是如何从基因文库(提取细胞全mRNA逆转录来的)中选定的?(还是从别的地方查到的?),我理解好像是直接测序 ,请问是如何从基因文库中找出(分离)这些基因一一测序的?
2.如何使用BLAST?比如同一文章中所说的已经测定出的1118个小梁细胞的表达谱基因序列我如何能查到?能给我讲解一下吗?太感谢了
有没有注意到一个问题,基因芯片只能检测已知的基因或序列,对于那些未知的则无能为力,一孔之见. Andrew说得不错,不过芯片中的基因数也在随对基因研究的深入而在不断增加。对普通的研究来说,主要的已知通路基本已能包括 。 多谢指教。有能回答我上面几个问题的吗?我还是有些不明白 ,看了一天资料也没有明白。
请问:如果我用一个正常群体的基因表达谱cDNA定做了一个芯片(含已知的1118个基因),在与患者cDNA样品的杂交中发现有一个基因表达下调了或者不表达,其原因是什么呢?是真的没有表达还是别的?
多谢多谢 样本是否一致?比如血细胞 ,其细胞亚群是否有可比性?
有对照吗? 样本是随机样本,小梁细胞是均一的内皮细胞 。至于对照,你指的是阴性对照、阳性对照还是转录的内对照?
小弟所知甚少 ,低级错误也可能犯,请多多指教。 除去实验和DNA芯片误差外,在与患者cDNA样品的杂交中发现有一个基因表达下调了或者不表达,需要用RT-PCR进行验证。其表达的下调或不表达 ,可能是受到其上游基因的调控,也可能是基因本身结构有改变,如无义突变可检测到表达的下降 。对这些经RT-PCR证实后 ,应该进行测序,察看这些基因是否有结构的异常。 在天天站长和各位战友的帮助下,我对现在所申请的课题从无知到略懂 ,终于完成了自然科学基金申请书的写作,在明天,我们的这份凝结着大家的汗水和智慧的申请书就要送出去之前 ,对各位这几天来的帮助表示诚挚的感谢,尽管这是我第一次写这样的申请,尽管几乎没有中的可能 ,我还是觉得自己学到了很多东西,也结识了很多好朋友,真诚的感谢给了我这个机会!
我把这份申请的正文部分放在了附件里了,希望感兴趣的朋友可以看一下 ,提一些宝贵意见,因为我认为这样的一个课题还是很值得去做的,尽管我们可能没有这个机会和能力去做。
再次感谢大家啦!
88411-.doc (76.5k) 恭祝申请成功!! 谢谢天天站长的指教 ,谢谢各位战友 。
近日科研基金开始申报,老板急命申请课题。由于对基础刚刚接触,故请教站长以及各位战友。
1目前收集到一少见的单基因病(癫痫方面) ,在国内未见临床和基础报道 。临床工作,包括留取血样已经完成。
2本病自从98年以来,致病基因得到了定位和克隆 ,但存在遗传异质性,相同的致病基因的突变位点也不相同。多篇文章发表在nature genetic等权威杂志上。最新的研究显示,仍有其他未知的致病基因 。
3合作实验室 ,有曾经成功的定位和克隆了一例致病基因的经验。
我们申请的目的是致病基因的定位和克隆,并有望发现新的致病基因。
想请教各位:
1在目前仅仅掌握临床资料的情况下,能否提出申请?
2还需要做那一方面的工作?
2如果可以,可能申请失败的原因是什麽?
谢谢各位 ,急切盼望指教!谢谢 如果是单基因疾病,那要看你收集的家系怎么样了 。另一个问题主要是你的临床诊断正确与否。我不是临床的,这个临床诊断事关重大 ,如果有些是诊断错误或分型有误的,很有可能导致无法discover disease gene 单基因疾病这方面的技术策略已经很成熟,有很多文献可以参考。国内也有多家研究机构在做 。 我想研究下某个基因SNP与一种疾病的关联。国外已有报道在2个位点上有联系。那么我是进行RFLP分析 ,还是用SNP分析? 各位大侠,我最近在做一个X染色体连锁遗传家系的疾病相关基因的定位,现在已用两个位点的MARKER(STR)做了基因组扫描 ,但是在连锁分析时遇到了困难,我用的是LINKAGE(version 5.1). 我想请教各位在进行连锁分析时,性连锁与常染色体连锁遗传参数设置有何不同?急盼各位予以赐教 ,不胜感激! 答无事转转 我想研究下某个基因SNP与一种疾病的关联 。国外已有报道在2个位点上有联系。那么我是进行RFLP分析,还是用SNP分析?
RFLP是最早期的遗传标记(第一代),随着遗传学的发展和测序片段的不断增多,已出现了第二代 、第三代遗传标记。RFLP通过酶切作用进行分析 ,操作简单,花费不多,但特异性差 ,有被淘汰的趋势;SNP定位明确,相对花费较大,对其分析可以通过测序、小测序(Snapshot)、荧光探针 、SNP芯片等方法 。
具体行RFLP分析 ,还是用SNP分析看你的研究目标和经济实力。 请教verygood,能否介绍一下小测序(snapshot)?
我最近想检测某基因与疾病的关系,外显子较多(20) ,在其他疾病中已有突变热点(9、11、13、17exon),但我要研究的病未见报道。请问我应对所有外显子测序吗? coldant wrote:
请教verygood,能否介绍一下小测序(snapshot)?
我最近想检测某基因与疾病的关系 ,外显子较多(20),在其他疾病中已有突变热点(9 、11、13、17exon),但我要研究的病未见报道。请问我应对所有外显子测序吗?
Snapshot为小测序反应,其原理简单地说是首先扩增包含SNP在内的一段DNA模板 ,再对PCR产物进行纯化,加入带有不同荧光的ddNTP和中间探针(所谓中间探针即SNP前20个bp左右寡核苷酸序列,探针与ddNTP按照模板序列结合 ,因为是ddNTP,其后不能再延伸,而结合的ddNTP反应的就是SNP情况) ,再纯化一下进行电泳,根据不同的荧光可以判断相应SNP基因型 。
该方法适用于对已知SNP等位基因型进行确认,对探针要求不高;但操作步骤多 ,大规模应用较为困难(采用基于毛细管的测序方法,如ABI3100测序仪系列时,相对工作量小些)。
检测某基因与疾病的关系 ,外显子较多(20),在其他疾病中已有突变热点(9 、11、13、17exon),建议你先研究一下这些位点。当然如果基因序列很短,也可以直接测序 ,因为目前发现的SNP或mutation毕竟还只有预计值的2%左右 。
Good luck 谢谢verygood:)
最近忙着论文答辩的事情。我对于这方面完全是菜鸟,但是老板说要有新意,同学给出了个这样的主意。
目前已经提取DNA ,进行基因分型 。但是我希望测序进行确定。上面提到的SNAPSHOT是小型测序,我已经确定了突变位点,片段在300bp左右 ,是否可以全部测序?
另外是全部的样本测序还是就挑选几个杂合子和纯合子测就可以证明?这方面的资料在哪里有介绍?我还是新手:( 无事转转 wrote:
谢谢verygood:)
最近忙着论文答辩的事情。我对于这方面完全是菜鸟,但是老板说要有新意,同学给出了个这样的主意 。
目前已经提取DNA ,进行基因分型。但是我希望测序进行确定。上面提到的SNAPSHOT是小型测序,我已经确定了突变位点,片段在300bp左右 ,是否可以全部测序?
另外是全部的样本测序还是就挑选几个杂合子和纯合子测就可以证明?这方面的资料在哪里有介绍?我还是新手:(
如果只是300bp,且标本不多的话,还是直接测序好,因为不仅可以明确已知的SNP基因型 ,还可能顺带发现一些文献未报道过的,这也就是说所有标本都要测序 。
如果只想对已知的那些SNP进行基因分型,你可以采用SNAPSHOT方法 ,当然亦可以用RFLP,只是特异性差些,所得的条带不一定与目标SNP不同等位基因有关 ,可能切到染色体其他区域。
这方面到没有一定的资料,我们也是做过以后才逐渐理解的,具体采用何种技术还是因地制宜吧。 verygood wrote
检测某基因与疾病的关系 ,外显子较多(20),在其他疾病中已有突变热点(9 、11、13、17exon),建议你先研究一下这些位点。当然如果基因序列很短 ,也可以直接测序,因为目前发现的SNP或mutation毕竟还只有预计值的2%左右 。
谢谢verygood老师。我研究的基因编码区2930bp,mRNA5084bp,基因全长80kb。本打算直接测序 ,但病人组18例(石蜡),对照组20例(外周血DNA行吗?),费用可能要6万!!! ,所以现在想改成PCR-SSCP加异常条带测序,您看行吗? verygood wrote:
如果只是300bp,且标本不多的话 ,还是直接测序好,因为不仅可以明确已知的SNP基因型,还可能顺带发现一些文献未报道过的 ,这也就是说所有标本都要测序 。
如果只想对已知的那些SNP进行基因分型,你可以采用SNAPSHOT方法,当然亦可以用RFLP ,只是特异性差些,所得的条带不一定与目标SNP不同等位基因有关,可能切到染色体其他区域。
这方面到没有一定的资料,我们也是做过以后才逐渐理解的 ,具体采用何种技术还是因地制宜吧。
测序以后的结果要分析突变有什么软件检测呢?另外的统计学分析是不是有专门的生物统计学书有相关的介绍?还是就是普通的统计就可以了? To coldant :
对于初步研究,您的方法应该可行 。
To 无事转转:
测序以后的结果分析突变主要通过序列比对初筛,可以利用Blast进行。不过确定是否确实为突变需要谨慎 ,应扩大样本再进行分型研究。 作疾病相关研究,你的case 和control太少了 。一般国内期刊好像也要200对200,国外一般性期刊需要400-500对500左右。一流的杂志一般都是至少1000对1000的。由于你经费不足 ,你不可能作测序,你还是直接选用已知的位点做 。因为这个基因跟多种疾病相关,说明这个基因很保守 ,很有可能跟你所研究的疾病相关,就算没有相关,通过与年龄 、性别、该疾病的危险因素综合分析(就是玩数字游戏) ,一般总能发文章的。
寻找疾病相关基因的SNP,目前主要是直接测序(外周血抽提的DNA,而不是组织),通过对比病人和正常人(无该疾病的人)该基因序列 ,搜寻SNP。verygood所说的blast,实际上并不适用。
你可对目标SNP所在区域设计一对prime1,使得该SNP位于其中,PCR长度500bp左右 。同时在PRIMER1覆盖的区域内 ,再设计一对PRIMER2。PRIMER2其中一个引物的3‘最后一个碱基必需是与目标SNP所在位点的正常碱基互补,如此,若病人在此位点突变 ,将导致PRIMER2一对引物不能扩增。另外PRIMER2与PRIMER1至少相距100多bp,PRIMER2产物为200多BP 。这样,在一个PCR反应中同时放入这2对引物,就可以得到4个片段(在设计引物时 ,必须使得这4个片段的长度不同,以便电泳时区别),而含有目标SNP的个体 ,则只有3个片段,通过电泳,就可以确定是否该个体有突变。
这个方法具体的名称我忘了。希望能对你有所帮组 。 maxon wrote:
寻找疾病相关基因的SNP,目前主要是直接测序(外周血抽提的DNA ,而不是组织),通过对比病人和正常人(无该疾病的人)该基因序列,搜寻SNP。verygood所说的blast ,实际上并不适用。
你可对目标SNP所在区域设计一对prime1,使得该SNP位于其中,PCR长度500bp左右 。同时在PRIMER1覆盖的区域内,再设计一对PRIMER2。PRIMER2其中一个引物的3‘最后一个碱基必需是与目标SNP所在位点的正常碱基互补 ,如此,若病人在此位点突变,将导致PRIMER2一对引物不能扩增。另外PRIMER2与PRIMER1至少相距100多bp,PRIMER2产物为200多BP 。这样 ,在一个PCR反应中同时放入这2对引物,就可以得到4个片段(在设计引物时,必须使得这4个片段的长度不同 ,以便电泳时区别),而含有目标SNP的个体,则只有3个片段,通过电泳 ,就可以确定是否该个体有突变。
这个方法具体的名称我忘了。希望能对你有所帮组。
呵呵,我指的是借用blast来方便序列的比对,当然applied biosystems有更好的软件 ,不过您如未购买相应仪器则很难获得 。
至于标本量的多少,确实是越多越好。对于相对危险度为2的致病位点来说,case-control各1000例检测效能才能达到100% ,病例数减少则检测效能也随之降低。但对于初步研究,还不清楚该位点是否有研究疾病有关就大规模投入,有可能颗粒无收 。
供参考。 今天基康公司建议我直接测序 ,把样本4个一组形成一个“pool?”来测,节省经费。他们本来的建议是正常和病人各用4例分别形成1个“pool ”来找SNP,然后用公司的TAG MAN(一种新技术)大规模检测SNP ,但我没有这么多病人标本 。所以只好只是测序。
请大侠看看这样好吗?如果我总共25例病人分成6个“pool”测序再分析可以吗?
先谢谢了。 maxon wrote:
寻找疾病相关基因的SNP,目前主要是直接测序(外周血抽提的DNA,而不是组织),通过对比病人和正常人(无该疾病的人)该基因序列 ,搜寻SNP 。verygood所说的blast,实际上并不适用。
你可对目标SNP所在区域设计一对prime1,使得该SNP位于其中,PCR长度500bp左右。同时在PRIMER1覆盖的区域内 ,再设计一对PRIMER2 。PRIMER2其中一个引物的3‘最后一个碱基必需是与目标SNP所在位点的正常碱基互补,如此,若病人在此位点突变 ,将导致PRIMER2一对引物不能扩增。另外PRIMER2与PRIMER1至少相距100多bp,PRIMER2产物为200多BP。这样,在一个PCR反应中同时放入这2对引物,就可以得到4个片段(在设计引物时 ,必须使得这4个片段的长度不同,以便电泳时区别),而含有目标SNP的个体 ,则只有3个片段,通过电泳,就可以确定是否该个体有突变。
这个方法具体的名称我忘了 。希望能对你有所帮组。
呵呵,谢谢了。我在相关文献上看到的是设计2个引物(突变和未突变的) ,另外反义引物相同 。正常对照组设计的引物很象你所谈到的PROMER2。我就纳闷为什么这样做? verygood wrote:
To 无事转转:
测序以后的结果分析突变主要通过序列比对初筛,可以利用Blast进行。不过确定是否确实为突变需要谨慎,应扩大样本再进行分型研究 。
确定是不可能做出结论 ,只是提出个展望。测序以后可以用SEQUENCEMAN软件分析,但是后面我想加个RFLP,按照相关文献报道来进行。这样分析起来好象就有更多的数据支持 。 coldant wrote:
今天基康公司建议我直接测序 ,把样本4个一组形成一个“pool?”来测,节省经费。他们本来的建议是正常和病人各用4例分别形成1个“pool ”来找SNP,然后用公司的TAG MAN(一种新技术)大规模检测SNP ,但我没有这么多病人标本。所以只好只是测序 。
请大侠看看这样好吗?如果我总共25例病人分成6个“pool”测序再分析可以吗?
先谢谢了。
呵呵,你也是在基康做吗?他们好象是用探针来检测SNP啊。我听说探针的准确性不如直接测序。不知道他们和你提出的是什么样的建议?:) maxon wrote:
作疾病相关研究,你的case 和control太少了 。一般国内期刊好像也要200对200 ,国外一般性期刊需要400-500对500左右。一流的杂志一般都是至少1000对1000的。由于你经费不足,你不可能作测序,你还是直接选用已知的位点做 。因为这个基因跟多种疾病相关,说明这个基因很保守 ,很有可能跟你所研究的疾病相关,就算没有相关,通过与年龄、性别 、该疾病的危险因素综合分析(就是玩数字游戏) ,一般总能发文章的。
5555555,可是我收集不到这么多的病例呀,经费也有限。
您说的直接做已知位点是什么方法啊?另外您有看过《生物学统计》这样的书吗?听说参照它就可以进行相关的分析了 。上海哪个图书馆或是书店有呀? 具体什么方法我忘了。统计学主要就是T检验和X2 多态性分析方法有两大类:
其一 ,基于家系分析,主要采用连锁不平衡方法。
其二,基于case-control ,如maxon所言,主要就是T检验和X2 。但是应注意control是否能代表所抽样的群体。因抽样错误而导致的假阳性结果在早期文献中比比皆是,这已逐渐引起大家的关注。 无事转转wrote:
呵呵 ,你也是在基康做吗?他们好象是用探针来检测SNP啊 。我听说探针的准确性不如直接测序。不知道他们和你提出的是什么样的建议?:)
看样子无事转转做的工作与我的很相似,可以多多交流!
基康公司建议:病人与对照各25例(病人只收集到25例),4例一组形成一个“pool”,PCR扩增所以外显子 ,直接测序。(节省费用)
申能公司建议:对每个病人进行扩增,直接测序,与genbank比较(不设对照组 ,费用18000元/10例)
北京鼎国公司:PCR-SSCP,(正常,病人各25例)
请verygood ,maxon,无事转转等战友们参谋参谋,哪个可行?
申请斑竹们帮助。 coldant wrote:
看样子无事转转做的工作与我的很相似 ,可以多多交流!
基康公司建议:病人与对照各25例(病人只收集到25例),4例一组形成一个“pool ”,PCR扩增所以外显子 ,直接测序 。(节省费用)
申能公司建议:对每个病人进行扩增,直接测序,与genbank比较(不设对照组,费用18000元/10例)
北京鼎国公司:PCR-SSCP ,(正常,病人各25例)
请verygood,maxon ,无事转转等战友们参谋参谋,哪个可行?
申请斑竹们帮助。
我病例30,对照12。人家的建议是直接测序 。我想测序以后再做个RFLP ,因为是要写论文,所以内容不可以少。
基因工程的应用
基因工程已经成为生物科学中不可或缺的一部分.也是最令人类充满无限遐想的一门科学.自从解开人类基因组后,长生不老等就古老的传说又再度流行起来.尽管现在的基因技术还不能做到让你真的长生不老,但是基因疗法等技术的出现已经让人们看到了基因工程的生命力.本文从环境保护,军事等方面浅谈了基因工程的应用.</P>
目前世界许多国家将生物技术,信息技术和新材料技术作为三大重中之重技术 ,而生物技术可以分为传统生物技术,工业生物发酵技术和现代生物技术。
现在人们常说的生物技术实际上就是现代生物技术 。现代生物技术包括基因工程、蛋白质工程、细胞工程、酶工程和发酵工程等五大工程技术。其中基因工程技术是现代生物技术的核心技术。基因工程的核心技术是DNA的重组技术,也就是基因克隆技术 。既然基因工程这么重要,那么什么是基因工程呢?
基因工程是指在体外将核酸分子插入病毒 、质粒或其它载体分子 ,构成遗传物质的新组合,并使之参入到原先没有这类分子的寄主细胞内,而能持续稳定地繁殖。根据这个概念,人们可以从一个生物的基因中提取有用的基因片断,植入到另外一个生物体内,从而使该生物获得某些新的遗传性状。从而获得所需要的新的生物的变种.运用基因工程可以加快生物的变异,并使生物的变异朝着有益于人类的方向发展.而且,基因工程是处在分子水平上的操作,因而可以跨越不同的物种进行操作.大大改善了传统的只能同类生物杂交并且不能控制变异方向的方法.例如,传统的水稻培养方法是让很多不同的水稻杂交,然后将种子都培养成水稻,再从中选择优良的品种.但是这种方法不仅工作量大,而且效果也不是很好.根据DNA重组原理,有些隐性性状大约只有1/4的概率能表达出来.这样就做了大量的无用功.但是利用基因工程,我们只需要从不同的水稻中提取所需要表达出来的性状的核苷酸组合,将其移植到另外的水稻上,就可以表达出来.这样做,大大节省了工程的周期,也提高了基因性状表现的精确度.另外,不同种的生物一般是不能交配的.例如鱼和牛,就不能进行交配而生出下一代.但是利用基因工程,我们可以把鱼的某些基因移植到牛的受精卵上,或者把牛的基因移植到鱼的受精卵上,加以培养,就可以产生既有牛的性状又有鱼的性状的新的物种.虽然基因工程有这么多的好处,但是也不是说可以滥用的.因为每种生物经过适者生存的自然选择,都能适应所处的生存环境.如果移植了外来的基因,可能会打破其体内的细胞的平衡,从而导致细胞的快速衰老甚至死亡.可见,基因工程要正确处理好细胞的相容性.</P>
那么,基因工程都有那些应用呢?
一:在生产领域,人们可以利用基因技术,生产转基因食品.例如,科学家可以把某种肉猪体内控制肉的生长的基因植入鸡体内,从而让鸡也获得快速增肥的能力.但是,转基因因为有高科技含量, 怕吃了转基因食品中的外源基因后会改变人的遗传性状,比如吃了转基因猪肉会变得好动 ,喝了转基因牛奶后易患恋乳症等等 。华中农业大学的张启发院士认为:“转基因技术为作物改良提供了新手段,同时也带来了潜在的风险。基因技术本身能够进行精确的分析和评估,从而有效地规避风险。对转基因技术的风险评估应以传统技术为参照。科学规范的管理可为转基因技术的利用提供安全保障 。生命科学基础知识的科普和公众教育十分重要。<BR>”<BR>
二:军事上的应用.生物武器已经使用了很长的时间.细菌,毒气都令人为之色变.但是,现在传说中的基因武器却更加令人胆寒.基因武器只对具有某种基因的人(例如某一种族)有杀伤力,而对其他种族的人毫无影响.这种武器的使用无疑会使遭受基因武器袭击的种族面临灭顶之灾.</P>
<P>
三: 环境保护上,也可以应用基因武器.我们可以针对一些破坏生态平衡的动植物,研制出专门的基因药物,既能高效的杀死它们,又不会对其他生物造成影响.还能节省成本.例如一直危害我国淡水区域的水葫芦,如果有一种基因产品能够高校杀灭的话,那每年就可以节省几十亿了.</P>
<P>科学是一把双刃剑.基因工程也不例外.我们要发挥基因工程中能造福人类的部分,抑止它的害处.
四 ,医疗方面
随着人类对基因研究的不断深入,发现许多疾病是由于基因结构与功能发生改变所引起的。科学家将不仅能发现有缺陷的基因,而且还能掌握如何进行对基因诊断、修复、治疗和预防 ,这是生物技术发展的前沿 。这项成果将给人类的健康和生活带来不可估量的利益。<BR> 所谓基因治疗是指用基因工程的技术方法,将正常的基因转如病患者的细胞中,以取代病变基因 ,从而表达所缺乏的产物,或者通过关闭或降低异常表达的基因等途径,达到治疗某些遗传病的目的。目前 ,已发现的遗传病有6500多种,其中由单基因缺陷引起的就有约3000多种 。因此,遗传病是基因治疗的主要对象。<BR> 第一例基因治疗是美国在1990年进行的。当时,两个4岁和9岁的小女孩由于体内腺苷脱氨酶缺乏而患了严重的联合免疫缺陷症 。科学家对她们进行了基因治疗并取得了成功。这一开创性的工作标志着基因治疗已经从实验研究过渡到临床实验。1991年 ,我国首例B型血友病的基因治疗临床实验也获得了成功 。<BR>
基因治疗的最新进展是即将用基因枪技术于基因治疗。其方法是将特定的DNA用改进的基因枪技术导入小鼠的肌肉 、肝脏、脾、肠道和皮肤获得成功的表达。这一成功预示着人们未来可能利用基因枪传送药物到人体内的特定部位,以取代传统的接种疫苗,并用基因枪技术来治疗遗传病。<BR>
目前 ,科学家们正在研究的是胎儿基因疗法 。如果现在的实验疗效得到进一步确证的话,就有可能将胎儿基因疗法扩大到其它遗传病,以防止出生患遗传病症的新生儿 ,从而从根本上提高后代的健康水平。</P>
五,基因工程药物研究</STRONG></P>
<P> 基因工程药物,是重组DNA的表达产物。广义的说 ,凡是在药物生产过程中涉及用基因工程的,都可以成为基因工程药物 。在这方面的研究具有十分诱人的前景。<BR>
基因工程药物研究的开发重点是从蛋白质类药物,如胰岛素 、人生长激素、促红细胞生成素等的分子蛋白质 ,转移到寻找较小分子蛋白质药物。这是因为蛋白质的分子一般都比较大,不容易穿过细胞膜,因而影响其药理作用的发挥,而小分子药物在这方面就具有明显的优越性 。另一方面对疾病的治疗思路也开阔了 ,从单纯的用药发展到用基因工程技术或基因本身作为治疗手段。<BR>
现在,还有一个需要引起大家注意的问题,就是许多过去被征服的传染病 ,由于细菌产生了耐药性,又卷土重来。其中最值得引起注意的是结核病 。据世界卫生组织报道,现已出现全球肺结核病危机。本来即将被消灭的结核病又死灰复燃 ,而且出现了多种耐药结核病。据统计,全世界现有17.22亿人感染了结核病菌,每年有<BR>900万新结核病人 ,约300万人死于结核病,相当于每10秒钟就有一人死于结核病 。科学家还指出,在今后的一段时间里 ,会有数以百计的感染细菌性疾病的人将无药可治,同时病毒性疾病日益曾多,防不胜防。不过与此同时,科学家们也探索了对付的办法 ,他们在人体、昆虫和植物种子中找到一些小分子的抗微生物多肽,它们的分子量小于4000,仅有30多个氨基酸 ,具有强烈的广普杀伤病原微生物的活力,对细菌 、病菌、真菌等病原微生物能产生较强的杀伤作用,有可能成为新一代的“超级抗生素”。除了用它来开发新的抗生素外 ,这类小分子多肽还可以在农业上用于培育抗病作物的新品种。</P>
<P><STRONG>
六,加快农作物新品种的培育</STRONG></P>
<P> 科学家们在利用基因工程技术改良农作物方面已取得重大进展,一场新的绿色革命近在眼前 。这场新的绿色革命的一个显著特点就是生物技术、农业 、食品和医药行业将融合到一起。 <BR>
本世纪五、六十年代 ,由于杂交品种推广、化肥使用量增加以及灌溉面积的扩大,农作物产量成倍提高,这就是大家所说的“绿色革命”。但一些研究人员认为 ,这些方法目前已很难再使农作物产量有进一步的大幅度提高 。<BR>
基因技术的突破使科学家们得以用传统育种专家难以想象的方式改良农作物。例如,基因技术可以使农作物自己释放出杀虫剂,可以使农作物种植在旱地或盐碱地上,或者生产出营养更丰富的食品。科学家们还在开发可以生产出能够防病的疫苗和食品的农作物 。<BR> 基因技术也使开发农作物新品种的时间大为缩短。利用传统的育种方法 ,需要七、八年时间才能培育出一个新的植物品种,基因工程技术使研究人员可以将任何一种基因注入到一种植物中,从而培育出一种全新的农作物品种 ,时间则缩短一半。<BR>
虽然第一批基因工程农作物品种5年前才开始上市,但今年美国种植的玉米 、大豆和棉花中的一半将使用利用基因工程培育的种子 。据估计,今后5年内 ,美国基因工程农产品和食品的市场规模将从今年的40亿美元扩大到200亿美元,20年后达到750亿美元。有的专家预计,“到下世纪初 ,很可能美国的每一种食品中都含有一点基因工程的成分。 ”<BR>
尽管还有不少人、特别是欧洲国家消费者对转基因农产品心存疑虑,但是专家们指出,利用基因工程改良农作物已势在必行 。这首先是由于全球人口的压力不断增加。专家们估计 ,今后40年内,全球的人口将比目前增加一半,为此,粮食产量需增加75%。另外 ,人口的老龄化对医疗系统的压力不断增加,开发可以增强人体健康的食品十分必要。 <BR>
加快农作物新品种的培育也是第三世界发展中国家发展生物技术的一个共同目标,我国的农业生物技术的研究与应用已经广泛开展 ,并已取得显著效益 。</P>
<P><STRONG>
七,分子进化工程的研究</STRONG></P>
<P>
分子进化工程是继蛋白质工程之后的第三代基因工程。它通过在试管里对以核酸为主的多分子体系施以选择的压力,模拟自然中生物进化历程 ,以达到创造新基因、新蛋白质的目的。<BR>
这需要三个步骤,即扩增 、突变、和选择 。扩增是使所提取的遗传信息DNA片段分子获得大量的拷贝;突变是在基因水平上施加压力,使DNA片段上的碱基发生变异 ,这种变异为选择和进化提供原料;选择是在表型水平上通过适者生存,不适者淘汰的方式固定变异。这三个过程紧密相连缺一不可。<BR>
现在,科学家已应用此方法 ,通过试管里的定向进化,获得了能抑制凝血酶活性的DNA分子,这类DNA具有抗凝血作用,它有可能代替溶解血栓的蛋白质药物 ,来治疗心肌梗塞、脑血栓等疾病 。<BR>
我国基因研究的成果</STRONG></P>
<P> 以破译人类基因组全部遗传信息为目的的科学研究,是当前国际生物医学界攻克的前沿课题之一。据介绍,这项研究中最受关注的是对人类疾病相关基因和具有重要生物学功能基因的克隆分离和鉴定 ,以此获得对相关疾病进行基因治疗的可能性和生产生物制品的权利。<BR>
人类基因项目是国家“863”高科技计划的重要组成部分 。在医学上,人类基因与人类的疾病有相关性,一旦弄清某基因与某疾病的具体关系 ,人们就可以制造出该疾病的基因药物,对人类健康长寿产生巨大影响。据介绍,人类基因样本总数约10万条 ,现已找到并完成测序的约有8000条。<BR>
近些年我国对人类基因组研究十分关注,在国家自然科学基金 、“863计划”以及地方政府等多渠道的经费资助下,已在北京、上海两地建立了具备先进科研条件的国家级基因研究中心 。同时 ,科技人员紧跟世界新技术的发展,在基因工程研究的关键技术和成果产业化方面均有突破性的进展。我国人类基因组研究已走在世界先进行列,某些基因工程药物也开始进入应用阶段。<BR> 目前,我国在蛋白基因的突变研究、血液病的基因治疗 、食管癌研究、分子进化理论、白血病相关基因的结构研究等项目的基础性研究上 ,有的成果已处于国际领先水平,有的已形成了自己的技术体系。而乙肝疫苗 、重组α型干扰素、重组人红细胞生成素,以及转基因动物的药物生产器等十多个基因工程药物 ,均已进入了产业化阶段 。</P>
<P><STRONG>
基因技术:进退两难的境地和两面性的特征</STRONG><BR> <BR> 基因作物在舆论界引发争议不足为怪。但在同属发达世界的大西洋两岸,转基因技术的待遇迥然不同却是一种耐人寻味的现象。当美国40%的农田种植了经过基因改良的作物、消费者大都泰然自若地购买转基因食品时,此类食品在欧洲何以遭遇一浪高过一浪的喊打之声?<BR> 从直接社会背景看 ,目前欧洲流行“转基因恐惧症 ”情有可原 。从1986年英国发现疯牛病,到今年比利时污染鸡查出致癌的二恶英和可口可乐在法国导致儿童溶血症,欧洲人对食品安全颇有些风声鹤唳 ,关于转基因食品可能危害人类健康的假设如条件反射一般让他们闻而生畏。<BR>
同时,欧洲较之美国在环境和生态保护问题上一贯采取更为敏感乃至激进的态度,这是转基因食品在欧美处境殊异的另一缘故。一方面 ,欧洲各国媒介的环保意识日益强烈,往往对可能危害环境和生态的问题穷追不舍甚至进行夸张的报道,这在很大程度上左右着公众对诸如转基因问题的态度 。另一方面,以“绿党”为代表的“环保主义势力”近年来在欧洲政坛崛起 ,在政府和议会中的势力不断扩大,对决策过程施加着越来越大的影响。<BR>
但是,欧洲人对转基因技术之所以采取如此排斥的态度 ,似乎还有一个较为隐蔽却很重要的深层原因。实际上,在转基因问题上欧美之间既有价值观念之差,更是经济利益之争 。与一般商品不同 ,转基因技术具有一种独特的垄断性。在技术上,美国的“生命科学 ”公司一般都通过生物工程使其产品具有自我保护功能。其中最突出的是“终止基因”,它可以使种子自我毁灭而不能象传统作物种子那样被再种植 。另一种技术是使种子必须经过只为种子公司所掌握的某种“化学催化”方能发育和生长。在法律上 ,转基因作物种子一般是通过一种特殊的租赁制度提供的,消费者不得自行保留和再种植。美国是耗资巨大的基因工程研究最大的投资者,而从事转基因技术开发的美国公司都熟谙利用知识产权和专利保护法寻求巨额回报之道。美国目前被认为已控制了相当大份额的转基因产品市场 ,进而可以操纵市场价格 。因此,抵制转基因技术实际上也就是抵制美国在这一领域的垄断。<BR>
生物技术在许多领域正在发挥越来越重要的作用:遗传工程产品在农业领域无孔不入,遗传工程作物开始在美国农业中占有重要位置;生物技术在医学领域取得显著进展,已有一些遗传工程药物取代了常规药物 ,医学界在几方面从基因研究中获利;克隆技术的进展为拯救濒危物种及探索多种人类疾病的治疗方法提供了前所未有的机会。目前研究人员正准备将生物技术推进到更富挑战性的领域 。但近来警惕遗传学家的行为的声音越来越受到重视。<BR>
今天,人们借助于所谓的DNA切片已能同时研究上百个遗传基质。基因的研究达到了这样一个发展高度,几年后 ,随着对人类遗传物质分析的结束,人们开始集中所有的手段对人的其他部分遗传物质的优缺点进行有系统地研究 。但是,生物学的发展也有其消极的一面:它容易为种族主义提供新的遗传学方面的依据对新的遗传学持批评态度的人总喜欢描绘出一幅可怕的景象:没完没了的测试、操纵和克隆 、毫无感情的士兵、基因很完美的工厂工人……遗传密码使基因研究人员能深入到人们的内心深处 ,并给他们提供了操纵生命的工具。然而他们是否能使遗传学朝好的研究方向发展还完全不能预料。
关于“基因课题要几年才能做出来 ”这个话题的介绍,今天小编就给大家分享完了,如果对你有所帮助请保持对本站的关注!
本文来自作者[晨帅]投稿,不代表天才号立场,如若转载,请注明出处:https://www.tiacapp.com/yxfl/202510-94227.html
评论列表(4条)
我是天才号的签约作者“晨帅”!
希望本篇文章《教程辅助!“微乐南昌麻将挂神器(怎么提高胜率)》能对你有所帮助!
本站[天才号]内容主要涵盖:国足,欧洲杯,世界杯,篮球,欧冠,亚冠,英超,足球,综合体育
本文概览:您好:...